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Negishi-Coupling

Alcazar et al. developed a continuous flow procedure for the synthesis of organozinc reagents, which were then employed in the
Negishi reaction.” The same group showed that the efficiency of nickel- and palladium-catalyzed Negishi reactions can be
enhanced by irradiation with blue light.> Below, we show an example where a Suzuki-coupling-hydrogenation sequence failed
to give the desired product using classical methods, while the product was successfully isolated in 46% yield after a two-step
one flow Negishi-coupling procedure.
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e Pd(dba),/X-Phos was found to be optimal

¢ Blue light irradiation did not influence the yield significantly

e 25 min residence time in flow

e 9 h flow process gave 3.64 g product after purification

¢ Batch and flow yields are similar, but flow is more practical for scale-up

Thiazoles and Pyrazoles

Thiazoles and pyrazoles are among the most frequently utilized ring systems in small molecule drugs.* Nevertheless, these
structures have been scarcely utilized in Negishi-couplings. We have started a systematic investigation in this area to access
building blocks for DNA-encoded libraries. The obtained a-heteroaryl acetates provide opportunity for derivatization both on
the heteroaryl ring or at the acetate motif.
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Pyrazoles — where light matters
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® Light irradiation has a positive effect
® Reaction times generally <1 h
®* HPLC yields are given
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Towards Amino Acid Analogues

A flow photochemical benzylic bromination was described by Kappe et al> The method is good yielding, scalable and the
reaction proceeds in CH3;CN without the need for radical initiators. We surmised that similar treatment of a-heteroaryl acetates
would provide a-bromo-a-heteroaryl acetates, and those would lead us to the synthesis of novel unnatural amino acids.
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Synthesis of Biologically Active Compounds

One of our medicinal chemistry project focuses on the synthesis of biologically active compounds to target the treatment of
high mortality tumor diseases. As depicted on the scheme our synthetic strategy relied on two key intermediates which were
prepared through photoredox Minisci reaction and by homologation of amino acids, respectively.
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Minisci Reaction - Key Intermediate L.

The Minisci reaction allows the introduction of an alkyl group into nitrogen heterocycles without the need for
prefunctionalization.® Traditional procedures require harsh reaction conditions and often provide low yields, however,
photoredox Minisci reactions can be performed under mild conditions with good selectivity and improved yields.’
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The Synthesis of a-halo Ketones - Key Intermediate Il.

Diazomethane is an explosive and toxic gas, and at the same time a useful methylating agent. The Kappe group described a
tube-in-flask reactor in which safe handling of anhydrous diazomethane was realized, and a method for the synthesis of a-halo
ketones was developed.® We adapted Kappe's procedure for the synthesis of dipeptides derived a-halo ketones.
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- Reactor Constructions

Photoreactors were assembled following a procedure from the Noel research group.’ The reactor for the synthesis of
organozinc reagents is very similar to the one described in reference 2b. The tube-in-flask diazomethane generator is described
in reference.®
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