
Negishi-Coupling
 
Alcázar et al. developed a continuous flow procedure for the synthesis of organozinc reagents, which were then employed in the 

Negishi reaction.²  The same group showed that the efficiency of nickel- and palladium-catalyzed Negishi reactions can be 

enhanced by irradiation with blue light.³  Below, we show an example where a Suzuki-coupling-hydrogenation sequence failed 

to give the desired product using classical methods, while the product was successfully isolated in 46% yield after a two-step 

one flow Negishi-coupling procedure.

 

Reactor Constructions
 

Photoreactors were assembled following a procedure from the Noel research group.⁹ The reactor for the synthesis of 

organozinc reagents is very similar to the one described in reference 2b. The tube-in-flask diazomethane generator is described 

in reference.⁸ 

 

Construction of C(sp²)-C(sp³) bonds is relatively difficult in comparison to C(sp²)-C(sp²) bonds. Recently, photoredox catalytic 

and other photochemical methodologies, together with technological achievements expanded the scope of C(sp²)-C(sp³) bond 

constructions.¹

Herein, we show how photochemical and general flow methodologies were employed in the synthesis of novel compounds 

(screening libraries and DEL building blocks) with high fsp3 content. Furthermore, we demonstrate the application of the Minisci 

reaction in the preparation of biologically active compounds. In the same project in situ generated diazomethane was used for 

the preparation of amino acid derivatives.

Thiazoles and Pyrazoles

Thiazoles and pyrazoles are among the most frequently utilized ring systems in small molecule drugs.⁴ Nevertheless, these 

structures have been scarcely utilized in Negishi-couplings. We have started a systematic investigation in this area to access 

building blocks for DNA-encoded libraries. The obtained α-heteroaryl acetates provide opportunity for derivatization both on 

the heteroaryl ring or at the acetate motif.  

Thiazoles

Pyrazoles – where light matters

Towards Amino Acid Analogues
 

.A flow photochemical benzylic bromination was described by Kappe et al ⁵ The method is good yielding, scalable and the 

reaction proceeds in CH₃CN without the need for radical initiators. We surmised that similar treatment of α-heteroaryl acetates 

would provide α-bromo-α-heteroaryl acetates, and those would lead us to the synthesis of novel unnatural amino acids.

Synthesis of Biologically Active Compounds
 
One of our medicinal chemistry project focuses on the synthesis of biologically active compounds to target the treatment of 

high mortality tumor diseases. As depicted on the scheme our synthetic strategy relied on two key intermediates which were 

prepared through photoredox Minisci reaction and by homologation of amino acids, respectively.

Minisci Reaction - Key Intermediate I. 
 
The Minisci reaction allows the introduction of an alkyl group into nitrogen heterocycles without the need for 

prefunctionalization.⁶ Traditional procedures require harsh reaction conditions and often provide low yields, however, 

photoredox Minisci reactions can be performed under mild conditions with good selectivity and improved yields.⁷

The Synthesis of α-halo Ketones - Key Intermediate II. 
 
Diazomethane is an explosive and toxic gas, and at the same time a useful methylating agent. The Kappe group described a 

tube-in-flask reactor in which safe handling of anhydrous diazomethane was realized, and a method for the synthesis of α-halo 

ketones was developed.⁸ We adapted Kappe’s procedure for the synthesis of dipeptides derived α-halo ketones. 

Conclusions
 
• The Negishi reaction was successfully applied in cases where other methods failed.

• The Negishi reaction between (2-ethoxy-2-oxoethyl)zinc(II) bromide and small heterocycles afforded α-heteroaryl

 acetates. These compounds provide an easy entry to further derivatization.

• Key intermediates of novel biologically active compounds were accessed through  photoredox Minisci reaction and

 through homologation of dipeptides with diazomethane.
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